
JOURNAL OF MATERIALS SCIENCE 30 (1995) 4.171-4178 

Stress distribution in particulate filled composites 
and its effect on micromechanical deformation 

G. V(::) R 0 S 
Eo'tv6s University Budapest, Institute for General Physics, H- 1445 Budapest, P.O. Box 323, 
Hungary 

B. PU K/kNSZKY 
Central Research Institute for Chemistry, Hungarian Academy of Sciences, 1525 Budapest, 
P.O. Box 17, Hungary 

A model was developed which assumes the spontaneous formation of an interphase around 
the inclusions in particulate filled composites. Elastic properties of the interphase change 
continuously from the surface of the particle to a matrix value far from it. Using first-order 
perturbation calculations an approximate analytical solution was given for the distribution of 
displacements and stresses around the inclusions. Fitting the model to experimental data 
has shown that an appropriate choice for the function and the parameters describing 
property changes around the inclusions makes possible the reliable prediction of composite 
properties. Using a simple averaging procedure, composition dependence of tensile yield 
stress was described; in accordance with experimental observations the model could predict 
composite yield stresses exceeding the matrix value and explain the effect of interfacial 
interactions. Comparison of the theoretical model with a previously developed semi- 
empirical one indicates that the main factor determining yield stress is the relative load 
bearing capacity of the second component. Interacting stress fields compensate each other, 
decreasing local stress maxima; thus justifying the averaging procedure applied. 
Contradictions of the models are analysed and areas for further research are also indicated in 
the paper. 

1. Introduct ion 
In heterogeneous polymer systems stress distribution 
around the particles determines micromechanical de- 
formations and as a consequence macroscopic proper- 
ties and performance of the material [1, 2]. The basic 
micromechanical deformations of polymers, shear 
yielding and crazing, may be accompanied by debon- 
ding in particulate filled composites [3-53. Earlier 
studies have shown that the initiation of shear yielding 
and crazing depends on the local stress distribution, 
which is modified by thermal stresses [6]. Debonding, 
however, is influenced also by matrix-filler, m-f, inter- 
action, which is determined by the strength of the 
interaction and the size of the inclusions [4, 6, 7]. 
Thus, the three main factors determining stress distri- 
bution and the prevailing deformation mechanism are 
stress concentration, thermal stresses and interaction 
[4-8]. 

In order to determine the distribution of stresses 
and local stress maxima around the particles, stress 
analysis has to be carried out. Application of tradi- 
tional stress analysis (e.g. Goodier [9]) for the deter- 
mination of stress distribution and for calculation of 
the initiation criteria of the different micromechanical 
processes (shear yielding, crazing, debonding) leaves 
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some phenomena occurring in heterogeneous polymer 
systems unexplained [6], i.e. 

1. composite yield stresses exceeding that of the 
matrix (Fig. 1) [6, 10, 11], 

2. particle size dependence of properties (Fig. 1) 
[10-133, 

3. effect of interacting stress fields of neighbouring 
particles, and 

4. interracial interactions [12]. 
Since in particulate filled thermoplastics interaction 

of the components leads to the development of an 
interphase which has properties different from those of 
both components [14, 15], a model has to be used in 
the stress analysis which takes this phenomenon into 
account. 

Several attempts have been already made to predict 
the elastic properties of composites by introducing an 
interphase layer of definite thickness and properties, 
which is independent from the position inside the layer 
[16-18]. These models assume uniform deformation 
both in the matrix and in the interlayer. In the case of 
a spontaneously formed interphase, a continuous 
change of elastic properties must occur in the inter- 
layer from a higher value at the surface to matrix 
characteristics at a certain distance from the particle. 
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Figure 1 Tensile yield stress of particulate filled PP composites 
plotted against filler content. Effect of filler particle size: (V) 
58.0 pro, ([5) 3.6 pm, (A) 0.08 pm, (o) 0.01 gin. 

In the authors' calculations the existence of such an 
interlayer is assumed and with the help of first-order 
perturbation calculations an approximate analytical 
solution is given for the determination of stresses 
inside and outside the particles. The results of the 
analysis are used in a simple averaging procedure and 
by choosing the proper dependence of elastic proper- 
ties on the distance from the particle, compositional 
dependence of tensile yield stress is predicted. Results 
of the calculations are compared with experimental 
data; attention is called to the contradictions of the 
model and areas for further research are indicated. 

2. Experimental procedure 
2.1. The model 
A particle with radius, R, is placed into the origin of 
the co-ordinate system (Fig. 2). In the z-direction an 
external stress, eye, is applied which is homogeneous 
far from the particle. If the development of a spontan- 
eously formed interphase with continuously changing 
properties is assumed, the equilibrium equation can be 
expressed as 

div ~(r) = div[~~ = 0 (1) 

and the constitutive equation is written in the form 

C(r) = ~~ + n(Irl)]  (2) 

where ~o is the homogeneous isotropic elastic prop- 
erty tensor of the matrix. The rl function describes the 
change of elastic properties relative to the homogene- 
ous ~0 value far from the particle, r 1 = 0 corresponds 
to the traditional two-phase models. Rearrangement 
of Equations 1 and 2 leads to 

div(~~ = - (C~ gradrl(Ir[) (3) 
1 + rl(Irl) 
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Figure 2 Spherical co-ordinate system used in the calculations. 
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The physical meaning of Equation 3 can be explained 
also by assuming that the effect of the interphase with 
changing properties induces a volume force field in 
a matrix with a homogeneous elastic modulus. 

Perturbation in the elastic properties of the matrix 
caused by the presence of an inclusion decreases con- 
tinuously with distance from the particle surface 
[16, 17, 19, 20]. The vl function giving the spatial dis- 
tribution of the elastic properties, as well as its gradi- 
ent, appears on the right-hand side of Equation 3. In 
the model, t 1 is not defined directly, but it is assumed 
that the right-hand side of Equation 3 can be given as 
the gradient of a q/function. The grad ~ function must 
have the proper physical meaning and it should be 
expressed in a simple form. It can be proven that 
a proper selection of rl yields a convergent solution; 
the most convenient form of the function was found to 
be 

gradB(lr[) g r a d  ~F(r) = K ( R )  p 
1 + n ( I r l )  - - r ( 4 )  

where K and p are dimensionless quantities which can 
be related to q by the integration of Equation 4, i.e. 

1) R p-1  r l ( , r , ) = e x p [ l n ( J +  ( ) ? - - 1  (5) 

and 

K = ( p -  1 ) I n ( J - i )  (6) 

K is a simple proportionality constant, while p deter- 
mines the decrease of the grad ~t function (modulus) 
with increasing distance from the particle. K and p 
are constants, their values can be determined from 
experimental data. In Equation 6, J is an integration 
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constant having direct physical meaning, it defines the o.8 
difference between the moduli on the surface of the 
particle and far from it in the matrix i.e. 

E(R) G(R) 
J = - U - - 1 -  GO 1 (V) 0.4 

Some characteristic q(p, p, J) functions are presented = e -  

in Fig. 3 (p = r/R). To create the curves of Fig. 3, 
p values were chosen which yield interphase thick- g 0 
nesses comparable with experience. Attention must be -~ 

O called here that Equation 7 indicates equal depend- E 
ence of the two moduli on the distance from the .~ 
particle and as a consequence Poisson's ratio, v, is _~ 

e - 0 . 4  
independent from location. ~" 

Expression for the displacement field is obtained by 
the combination of Equations 2-4 and 7 

grad div u + (1 - 2v)Au = - 2v grad ~(r)div u(r) -0.8 

- 2(1 -- 2v)grad~(r)  

x grad u (r) (8) 

The equation can be solved by iteration using the 
following function for the displacement vector 

u(r )  = u ~  + u (r) + u (r) + . . .  + u"(r) . . .  (9) 

where u~ is the solution of the g r add ivu ( r )+  3 
( 1 -  2v)Au = 0 equation describing the two-phase 
composite not containing an interphase (e.g. Goodier  
[93)- The u ~, uZ ,u  3, . . . ,  components are the correc- ~ 2.5 
tions obtained in each iteration step. With the help of 
the O" and A" vector potentials u ~ can be divided into 
two parts, i.e. % 

~-- 2 u" = gradO"(r) + curiA" (10) 

Separating the displacement vector into the ~" and ~ 
A'  terms and starting with u ~ the @" and A" compo- E 

o 1.5 
nents obtained in the nth iteration step can be ex- 
pressed as .~ 

X 3  
(D 

1 --> 
div f " - ~ ( u  "-~ ) (11) ~ 1 

2(1 - -  v) -~ i v -  

1 
AAA" 1 - 2v curl f " -  ~(u" 1) (12) 

The equations were solved under the boundary condi- 
tions of 

urn'f (R) = 0 (13) 

for a completely rigid particle and 

(~e  + ~.m)n = drrn (14) 

expressing continuity of stresses. The equations can be 
expressed in analytical form by using spherical har- 
monic functions. Model calculations were carried out 
with one iteration step to determine u ~ u  ~ + u 1 in 
a polar co-ordinate system (see Fig. 2), where the z- 
axis was parallel with the direction of the external 
stress. The ( G ~  (�9169 component of the dis- 
placement field is plotted in Fig. 4 at 0 = 0 for differ- 
ent p values in the case of rigid particles (J = 0.8). 
J = 0 would correspond to a two-phase model with- 
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Figure 3 Changing elastic properties of the interphase as a function 
of the distance from the particle surface at different p (rate of 
property change) [ ( - - )  10, ( - - - )  30, ( . . . . . .  ) 60] and J = +_ 0.8 
(interphase property at the surface, 0 = 0) values. 
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Figure 4 Effect of an interlayer with changing properties on the 
displacements around the particle under external load. Relative 
displacement is plotted against relative distance at different p values 
and at J = 0.8, 0 = 0. 

out an interphase. Significant changes can be observed 
in displacement due to the presence of a hard inter- 
phase. 

Stress fields can be derived from the deformations 
determined previously. Stress distribution around 
a particle is presented in Fig. 5, it depends very much 
on p, i.e. on the "thickness" of the interphase. Depend- 
ing on p, the stress concentration can reach a value of 
about three compared to a stress concentration factor 
of about two obtained in the two-phase approach [9]. 
In the case of a thin interlayer, p = 60, stresses at the 
surface of the particle are lower than in the two-phase 
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Figure 5 Radial stress distribution as a function of distance from 
the particle surface at different p values. J = 0.8, 0 = 0. Goodier's 
solution [9] represents a boundary case without interlayer. 

solution due to decreased deformation, but their value 
rapidly increases to the level obtained without an 
interphase. At a long distance from the particle ~rr/~ e 
becomes one, i.e. stresses assume the value of the 
homogeneous matrix. In boundary cases (p = 1 or 
J = 0) the model yields the same solution as the tradi- 
tional Goodier approach, which verifies the validity of 
the treatment. 

2.2. C a l c u l a t i o n  o f  t h e  y i e l d  s t r e s s :  

a v e r a g i n g  
Compositional dependence of yield stress can be de- 
termined by a simple averaging technique. One as- 
sumes that filler content, q)f, is not too high and the 
interaction of the interphases of different particles can 
be neglected. In this case the stress inside one particle, 
6 ~, is equal to that of a particle placed into an infinite 
matrix, 6 ~~ 

~i ~ ~o  (15) 

where ~o  includes the external stress, ~e. Average 
stresses developing in the particles and in the matrix, 
respectively, must satisfy the conditioias 

q)f ((~i>f -l- (1 -- q0f)(~m)m = e r 

( ( ~ m ) m  :~  (~e (16) 

where (6z)f  and (~m)m are the average stresses inside 
the particle and in the matrix, respectively. According 
to Equation 16 the resulting average stress is ~e. 
Introduction of Equation 15 into Equation 16 and 
rearrangement leads to the following solution for the 
stress developing in the matrix 

( 6 - m ) m  = ( 1 7 )  
1 - (pf 

If the yield stress of the matrix polymer is %0, shear 
yielding is initiated in the composite at (cYm)m ~ CYyO. 
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Figure 6 Compositional dependence of relative tensile yield stress 
of particulate filled composites predicted by Equation 18 at different 
degree of stress'transfer, k. 

The external stress initiating yielding can be expressed 
as 

(~y = (YyO[-1 - -  q0f/(1 - -  q)f ( O ' c ~  "] ( 1 8 )  

where ( c ~ ) f / ~  ~ = k is a dimen'sionless quantity. 
Equation 18 indicates that composite yield stress is 

determined by the average stress developing inside the 
particle. If, compared to the two-phase model, stresses 
change in the matrix, they will change also inside the 
particle due to the following boundary condition 

[ a ; (p  = i )  + e'~(p = I ) I n  = 0 (19) 

This results in a change of composite yield stress as well. 
Relative yield stress calculated according to Equa- 

tion 18 is presented in Fig. 6. The figure closely re- 
sembles Fig. 1, where experimentally determined yield 
stress values are plotted as a function of composition 
for polypropylene(PP)/CaCO3 composites. In the 
( ~ ) / ( s  e = k = 1 case, {~'y = I~y 0. If k > 1, yield stress 
increases continuously; while at k < 1 it decreases. The 
model obviously answers at least two of the questions 
presented in the introduction, it takes into account 
interracial interactions and predicts composite yield 
stresses exceeding that of the matrix. Boundary cases 
yielding solutions equivalent to the traditional Goodier 
I-9] solution and strong similarity of the compositional 
dependence of measured and calculated yield stresses 
supply sufficient proof for the validity of the approach. 

3. D i s c u s s i o n  

3.1. V e r i f i c a t i o n :  c o m p a r i s o n  o f  
e x p e r i m e n t a l  da ta  

The extremely simple form of Equation 18 makes 
comparison with experimental data easy. Rearrange- 
ment of the equation into 

1 - -  % 1 k 
- -  (.pf ( 2 0 )  

(~y O'y 0 O'y 0 



and plotting ( 1 -  q0f)/O-y versus % should yield 
straight lines with an interception of 1/(Yy o and a slope 
of k/%o.  Indeed, plotting experimentally measured 
yield stresses of some PP/CaCO3 composites [10-12J 
in the above-mentioned way excellent straight lines 
are obtained in practically all cases (Fig. 7). The three 
CaCO3 fillers differ in particle size, i.e. specific surface 
area, while the matrix polymer is the same in all cases. 
Slopes of the lines differ significantly from each other 
indicating strong particle size dependence of para- 
meter k, which is not predicted by the model. The fact, 
however, that the theoretically derived correlation 
predicts compositional dependence correctly and can 
be fitted to the experimental data is encouraging and 
further verifies the validity of the treatment. 

Existing data on different particulate filled ther- 
moplastic composites [10-12] have been analysed 
and the characteristic parameters  calculated. The re- 
sults are compiled in Table I. Dependence of k on 
specific surface area of the filler is clearly seen in Fig. 8. 
The correlation can be divided into two parts. In the 
first section k depends linearly on Ar, as was observed 
earlier for the B versus Af correlation [11]. The slope 
seems to depend also on the properties of the matrix 
polymer. At high specific surface areas a strong devi- 
ation from linearity is observed due to aggregation of 
very small filler particles ( < 0.1 ].tm). The observation 
is further supported by the k values obtained for the 
SiO2 (Af = 200 m 2 g-*)  filled composites not plotted 
in Fig. 8 (see Table I). The effect of filler characteristics 
depends strongly on matrix properties as well, which 
is in agreement with the physical meaning of k and 
emphasizes the importance of the relative load bearing 
capacity of the components.  This latter factor depends 
on the properties of the components and on interracial 
adhesion. 

Since k is related both to the rate of property 
decrease, ("thickness" of the interphase, p) and to the 
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Figure 7 Tensile yield stress of PP composites plotted in a lin- 
earized form of Equation 18. Particle size: (o) 58.0/am; (A) 3.6 gm; 
(D) 0.08 ~tm. 

TABLE I Parameters of the model 

Matrix Filler Af k J 
(m 2 g- l) 

PP CaCO3 0.5 - 1.02 -- 0.40 
CaCO3 1.9 - 0.72 0.05 
CaCO3 2.2 - 0.63 0.11 
CaCO3 3.3 - 0.42 0.25 
CaCO3 5.0 - 0.01 0.47 
CaCO3 16.5 0.36 0.64 
SiO2 200.0 1.86 1.22 

PVC CaCO3 0.5 -- 1.69 
CaCO3 3.3 - 0.90 - 0.20 
CaCO3 16.5 - 0.38 0.44 
SiO2 200.0 1.87 1.70 

LDPE CaCO3 0.5 0.05 0.13 
CaCO3 3.3 1.62 0.35 
CaCO3 16.5 2.22 0.41 
SiO2 200.0 3.85 0.60 
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Figure 8 Dependence of k on the specific surface area of the filler. 
Effect of aggregation. Matrix polymer (zS) PVC, (o) pp, ([~) LDPE. 

property of the interphase (modulus on the surface of 
the particle, J) this latter parameter  was also cal- 
culated and presented in Table I. In calculating 
J a constant relative interlayer thickness was assumed, 
i.e. p = r/R ~ 1.1. This could be achieved by choosing 
a p value of 60. A constant relative interlayer thickness 
means varying absolute thicknesses; on small particles 
a thinner, while on large particles a thicker, interphase 
forms. 

The J values calculated in this way indicate strong 
variation of the interphase modulus on the specific 
surface area of the filler. In the case of large particles 
negative J values were calculated indicating a soft 
interlayer. Considering that in the investigated com- 
posites the interlayer forms spontaneously due to in- 
teraction created by secondary, van der Waals '  forces, 
t he strong particle size dependence and the formation 
of a soft interphase are difficult to explain. Adsorption 
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of polymers to fillers has been proved both directly 
and indirectly [21-23]. Theoretical calculations have 
also shown that adsorption of polymer molecules on 
a solid surface leads to ordered structures and de- 
creased mobility, which indicates increased modulus 
at the same time [24]. Thus, the formation of a hard 
interphase seems to be more probable and instead of 
a constant relative interlayer thickness, a constant 
absolute interphase layer must be assumed in the 
calculations. Moreover, the values of Table I were 
calculated under the assumption that the dominating 
deformation mechanism is shear yielding, but obvi- 
ously other mechanisms, especially debonding must 
be considered, as well. 

In relation to the data of Table I, attention must be 
called to the fact that several factors were neglected 
during the development of the model and the calcu- 
lations. The most important of these are 

1. The effect of the interacting stress field of adjac- 
ent particles. The model assumes that interlayers of 
continuously changing properties formed around in- 
dividual particles are independent from each other, 
but allows for interacting stress fields; it does not take 
them into account, however. 

2. Local stress maxima are smoothed out by the 
averaging procedure. Although interaction of stress 
fields has such an effect, fluctuation of the stress field 
and local stress maxima still exist in the composite. 
These might induce local micromechanical deforma- 
tions. 

3. Several models predicting the compositional de- 
pendence of tensile yield stress use a minimum effec- 
tive load bearing cross-section of the matrix, based on 
the argument that in the absence of interactions all the 
load is carried by the polymer [25-27]. The present 
model takes into account the average cross-section, 
which is proportional to the volume fraction of the 
matrix (1 - q~f). Increased load at the minimum cross- 
section might induce yielding at lower external load 
than predicted by the model. 

3.2. Comparison with an existing 
semiempirical model 

By assuming the spontaneous formation of an inter- 
phase a somewhat different model was developed 
earlier for the prediction of the compositional depend- 
ence of the tensile yield stress of particulate filled 
polymer composites [10]. The only assumption of the .~ 
model was that property (yield stress) changes propor- 
tionally to the amount of filler added. The final cor- "~ 
relation is g: 

1 - q)f exp(Bq0f) (21) 
O'y = O'y 0 1 -~- 2,5(4) f 

where B is a parameter related to matrix-filler interac- 
tion. The correlation can be divided essentially into 
three parts: effect of matrix property, oyo; effective 
load bearing cross-section, (1 - %)/(1 + 2.5 q~f); and 
interaction, exp(Bq0r). Comparison of the models and 
their parameters might help to explain the contradic- 
tions encountered during the application of the theor- 
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etical model to the experimental data, on the one 
hand, and to improve the understanding of the phys- 
ical meaning of B, on the other. 

General solutions of Equation21 for different 
B values are plotted in Fig. 9. A very close similarity 
can be observed both with the predictions of the theor- 
etical model (Fig. 7), and with the experimental data 
(Fig. 1). The semi-empirical model proved to be valid 
practically in all cases, not only in particulate filled 
composites, but also in other heterogeneous systems 
like polymer blends [28, 293 as well. The similarity of 
Figs 7 and 9 predicts also some correlation between the 
parameters of the equations, i.e. k and B. Indeed, a per- 
fect linear correlation exists between the two quantities 
shown by Fig. 10. Irrespectively of the matrix [PP, 
low density polyethylene (LDPE), polyvinylchloride 
(PVC)] or the characteristics of the filler (CaCO3, 
SiO2, changing particle size) the data fit the same line, 
suggesting that the models are complementary. 

Beside the close correlation of the two models, 
Fig. 10 may lead us to further considerations. It is 
clear from the figure that B is-always positive. This is 
in accordance with the assumption of the model; inter- 
action leads always to stress-transfer and distribution 
of the load between the matrix and the filler. The load 
carried by the second component depends on the 
strength of the interaction and on the contact area 
(size of the interface), a correlation which could be 
expressed quantitatively by assuming that at a certain 
filler content all the polymer is bonded in the inter- 
phase ("maximum packing fraction"), i.e. 

B = (1 + Aflpr) In Cyyi (22) 
CYy0 

where Ar is the specific surface area of the filler (size of 
the interface), pr its density, while l and c~yi are thick- 
ness and properties of the interphase, which depend 
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Figure 9 Compositional dependence of tensile yield stress of partic- 
ulate filled composites predicted by Equation 2t for different 
matrix-filler interactions, B. 
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Figure 10 Correlation of parameters obtained from the theoretical 
Equation 18, k, and the semi-empirical model Equation 21 B, 
respectively. Particle size: (o) 58.0 gm, (A) 3.6 jam, (D) 0.08 ~tm. 

on the strength of the interaction. Equation 22 was 
successfully used to explain the dependence of B, and 
thus ~y, on particle size (Af), interaction and matrix 
properties. The success of Equations 21 and 22 in the 
explanation of experimental data strengthens previous 
supposition that a hard interphase forms in the inves- 
tigated particulate filled polymers. As a consequence, 
J must be calculated by assuming constant absolute 
layer thickness instead of the currently used relative 
one. 

Although it was clear also earlier that B is propor- 
tional to stress transfer, i.e. to the load carried by the 
second component, the correlation of Fig. 10 further 
verifies this observation. Since B and k are in linear 
correlation and 

k =f(J,p, Ef, Em, Gf, Gm,Vf,Vm) (23) 

it is also valid that 

B =f(J,p, Ef, Em, Gf, Gm, vr, Vm) (24) 

The determination of the exact correlation between 
B and the elastic properties of the components, as well 
as between p and l, the layer thickness, needs further 
work and consideration. 

The success of the semi-empirical model (Equation 
21) in the analysis of the experimental data indicates 
that the minimum cross-section concept is effective in 
most cases. This approach completely neglects stress 
concentrations and assumes homogeneous stress dis- 
tribution in the composite. The averaging technique 
used in the theoretical model does basically the same 
and predicts properties equally well. These results 
indicate that interacting stress fields of neighbouring 
particles decrease the intensity of local stress concen- 
trations leading to a more or less uniform stress distri- 
bution in the matrix. This, of course, can be higher 
than the external load or the one calculated from the 
minimum cross-section concept. It must be also noted 

that small scale local yielding due to stress concentra- 
tion might have the same result, i.e. averaging of local 
stresses acting in the matrix. 

3.3. Debonding 
As mentioned earlier, shear yielding can be accom- 
panied or replaced by debonding in particulate filled 
composites [3-5]. Determination of the dominating 
micromechanical deformation mechanism is impor- 
tant in order to find optimum properties. It was shown 
that the critical stress for debonding, c~ D, is determined 
by thermal stresses, c~ T, and interfacial adhesion [6] 

(yT (2_ GoWAB~I/2 
~D _ + (25) 

2 \ C1R } 

where WAB is the reversible work of adhesion and Ct is 
a constant containing only geometrical parameters 
related to the extent of debonding. Substitution of the 
theoretical model into Equation 25 is very difficult 
since thermal stresses are also modified by the inter- 
phase having continuously changing properties. For 
a qualitative analysis, therefore, c~ T was neglected. 
Substituting Equation 18 into the debonding model 
one obtains 

~D 1 --  (p (2GoWAB" ~1/2 
- 1- ---k-~ ( C-~ J ( 2 6 )  

Equation 26 leads to several conclusions. It indicates 
that composition dependence of shear yielding and 
debonding stress are the same, i.e. yield stress of the 
composite shows always the same compositional de- 
pendence irrespective of the mechanism of deforma- 

separation of the two 
using this evaluation 

tion. This implies also that 
mechanisms is not possible 
technique. 

Introducing the expression 

( 2GOWAB~ 1/2 
/ (27) 

and transforming Equation 26 to the linear form one 
obtains 

1 - q)f 
c~ D - kI(R)--  k~(R)k~f (28) 

In this form the equation explains the particle size, Af, 

dependence of the slope, k of the straight lines of 
Fig. 7, indicating also that the dominating deforma- 
tion mechanism is debonding in the studied cases. 
Equation 28 shows, however, also that besides the 
slope, interception depends on particle size in the same 
way, a prediction not verified by the experimental 
results (Fig. 7). This contradiction sheds considerable 
doubt on the validity of the analysis of debonding in 
this form and indicates the necessity of further theoret- 
ical work. 

Besides application of the model to debonding, fur- 
ther work has to be done in order to explain the 
particle size dependence of k. Effect of thermal stresses 
must be calculated and interacting stress fields of 
adjacent particles should be considered. A major 
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problem is the detection of a change in the micro- 
mechanical deformation mechanism, which definitely 
occurs as a function of particle size [4, 7], component 
properties or experimental conditions. 

4. Conclusions 
A model based on an interlayer with continuously 
changing properties was developed to describe 
stress-strain behaviour of heterogeneous polymer sys- 
tems. Changing interlayer properties significantly al- 
ter deformation and stress fields around the particles. 

By using a simple averaging procedure a correlation 
was derived which describes the compositional de- 
pendence of the yield stress of particulate filled com- 
posites. The equation contains two parameters related 
to the changing properties of the interphase and ex- 
presses relative load bearing capacity (stress transfer) 
of the matrix and the filler. The model properly pre- 
dicts compositional dependence of yield stress; agree- 
ment with experimental data is good. Comparison of 
the theoretical model with an existing semi-empirical 
one indicates the development of a hard interlayer of 
constant thickness, which might explain the strong 
dependence of the parameter of the equation, k, on the 
specific surface area of the filler. Comparison of the 
two models justifies the averaging procedure used in 
the derivation of the compositional dependence of 
yield stress, as well. Application of the model to de- 
scribe debonding was not succesgful. Further work has 
to be done to accommodate the effect of thermal 
stresses and interacting stress fields into the model, to 
apply it to debonding and to separate the effect of 
different micromechanical deformation processes on 
the measured yield stress of composites. 
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